Proposed Coding Guidelines
GOES-R Calibration Working Group

1.0. Introduction
The GOES-R Calibration Working Group (CWG) is a collection of scientists from various backgrounds tasked with working towards the standardization of the calibration for the GOES-R series of weather satellites. Prior to always, there has been an over-emphasis on each CWG member writing and maintaining their own program code with regards to their respective projects. By effective isolation of each CWG member in this fashion, the overall productivity and effectiveness of the group as a whole has suffered while at the same time introducing significant risk in the form of the lack of a common knowledge base for critical “lessons learned”. The introduction of coding guidelines in the form of this document seeks to help establish the knowledge base by ensuring that shared program code has a basic standard of readability and stability for everyone in the group. The establishment of this knowledge base and coding guidelines should not hamper the individual group member in their task, but provide them with resources to help them along to their goals.
1.1. Defining the Problem
Each CWG member has been expected to build/write their own software tools for fetching, formatting, processing, publishing, and archiving the respective data for their tasks and research projects. This is the problem known as “re-inventing the wheel”, and the consequences are obvious: To have each group member generating what is essentially the same functional code time and again is obviously an inefficient way to work and therefore decreases the effective productivity of the group as a whole. There is also a risk in having existing flaws in the programs going unnoticed. By allowing others to review the code will lead to the identification of those flaws and solutions. This leads to code that has better stability, less risk, and better efficiency.
1.2. Defining the Solution
The CWG currently consists of individual scientists, each with their own tasks and working separately. Ultimately, participation by these members must be voluntary and desirable. The benefit of adhering to the coding guidelines and sharing of programs and procedures must be obvious to the CWG members from the very start.

 In lieu of a strict set of formal rules such as a commercial enterprise might have, we choose to use a set of guidelines (suggested practices) for how to make program code readable by other people not familiar with the originating project. In addition, it is hoped that through the sharing of code between colleagues will result in a gentle sort of peer pressure to utilize the coding guidelines and improve the functionality of the code published in this fashion.
2.0. Coding Guidelines
These guidelines are presented as a mapping of the acknowledged “best practices” of the programming world. The concepts presented herein are basic and meant to facilitate the collaboration between the CWG members. Algorithm design, advanced data structures, and parallel programming methods are left to the individual group members to discover and explore the use of.

2.1. Programming Languages
We do not take a stance that there is one preferred or best language, we only note that use of IDL seems fairly ubiquitous throughout the group, and therefore should be considered when selecting a language. Choosing which programming language to use is left up to the individual, although the following needs to be considered:

Choose a language suitable for the task you have been assigned or asked to perform. Each language has its own strengths and weaknesses. Judging which language to use based on that language’s built-in capabilities, add-ons, and ease of use is encouraged.

Make sure that the code you write is as portable as possible. Code that is written on your machine should be able to be run on someone else’s machine that has a compiler for that language. If a program is reliant upon certain libraries, then it should be clear which one(s) and where they can be found (Back up any of your custom libraries!).
2.2. General Guidelines
These guidelines are presented in order to aid the CWG members to make their code readable and understandable to other group members.
Give credit where credit is due. Using or borrowing code in your program is acceptable given that you clearly identify the code being used and the author (and that the author does not object to your use of that code). A good method for crediting an author/contributor is a comment block preceding the borrowed code.
Indentation should be used to indicate where code is inside a function, subroutine, or a loop. 3-5 spaces is suggested. If your text editor has automatic indentation, you may use that.

Use blank lines sparingly to emphasize the structure of the code. Blank lines are a good way to separate functions, subroutines, and blocks of related code. This helps to emphasize how code segments relate to one another, and provides space in which to perform documentation.
Use good naming conventions. Name your variables and functions with a care towards others who may have to one day use your code. Single-letter variables are easy to type, but are plainly non-descriptive. This method does not lend itself to easy modification later. An exception to this might be in the case of constants, which should be well documented.
Limit yourself to one statement, expression, or command per line of code. Compound statements can easily become too complicated to decipher easily. Do yourself and anyone who might read/maintain your code later a favor and keep your code easily readable.

Break up over-long lines. The standard length for a line of code is 80 characters. If multiple lines are needed for an expression, try to break up the line in a way that makes the code easy to follow.
Keep comments up-to-date. If you modify your code, make sure that any comments associated with that segment of code are still relevant.

Comments should be descriptive and written clearly.
Follow the standard coding conventions for your chosen language. Simply google “<language> coding standards” and a suitable reference should be returned. A good reference will have examples of encouraged practices and discouraged practices. The Wikipedia article on coding standards (http://en.wikipedia.org/wiki/Coding_standard) has a list of links to program specific coding standards and is a good starting point.
Error messages should be meaningful. Don’t be vague with your error messages. It should be clear what the problem is.
Document the input and output. If your code has requirements regarding the input and/or output, document it! Someone reading the accompanying readme or in-line comments should be able to find this information fairly easily.
Use some form of revision control. The NESDIS/STAR Linux servers have a revision control tool called Subversion, which can be used as an aid to back-up your code. Barring that, using some other form of back-up is advised. For large, multiple-person coding projects, the use of ClearCase is to be considered.
2.3. Implementing the guidelines
A good general way to start implementing the guidelines is to start on whatever code you are currently writing or modifying. Update already existing code when you next modify it. There is no hard deadline for compliance, and the guidelines generally only apply to code you intend to share or pass on to someone. Use your best judgment concerning what makes your code more understandable and readable to others and be open minded to suggestions on this matter.
3.0. Sharing your code
It is to be expected that there are tasks that are general to the CWG that can be satisfied by a few tools made available to all. To this end, there is a proposal to create a repository for software tools, algorithms, and “howto” documents. Coupled with this are the coding guidelines that attempt to ensure that all code published in this manner is readable and concise to the end user. This repository should be easily accessible to anyone in the group with a network presence.
3.1. Code Maturity Level
A rough measure on how mature your code is will need to be specified whenever you upload. Code that is very task-specific, does not implement error or exception-handling is considered to be less mature than code that has more general use and does. The exact codes to denote these maturity levels will be developed.

3.2. Version Control
Code that has reached a certain maturity level will be considered the “stable” version. Updates to that code will be considered as a “testing” version until that code goes through vigorous tests to prove its stability.

4.0. Summary
The guidelines presented here are meant to facilitate collaboration between the members of the CWG by providing an open knowledge base to share and develop software tools. By having a shared knowledge base of and about software tools, it is hoped to facilitate the CWG members in their tasks and provide a boost to overall productivity.
